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Introduction

Characterization of biologically active lipids and their
metabolites, or lipidomics, is a growing area of research
that is complementary to proteomics and metabonomics
approaches. However, unlike most components in pro-
teomics and metabonomics, understanding the biological
activity of several lipids requires measurement of the
different stereoisomers of those lipids. This application
report describes the methodology and preliminary results,
where normal-phase chiral liquid chromatography is
employed to separate the enantiomers of hydroxy fatty
acids produced from arachidonic acid and linoleic acid
by lipoxygenases and cyclooxygenases.1 High-sensitivity
detection of these lipid metabolites is possible using
derivatization with the pentafluorobenzyl (PFB) moiety2

and employing electron capture atmospheric pressure
chemical ionization (APCI), followed by analysis using
selected reaction monitoring (SRM) on a triple quadru-
pole mass spectrometer.

Goal

• Develop an ultra-sensitive method for quantifying
lipids in biological fluids

• Demonstrate the selectivity and sensitivity afforded
by enhanced resolution SRM analysis

• Use PFB derivitization to improve analytical limits
of quantitation (LOQs)

Experimental Conditions

Rat Intestinal Epithelial Cell Extraction and Preparation

Lipid extracts from rat intestinal epithelial (RIE) cells
are derivatized to the corresponding pentafluorobenzyl-
derivatized hydroxy fatty acids. Normal phase chiral
LC was used to separate (R) and (S) enantiomers of lipid
metabolites. Detection was achieved with a triple quad-
rupole mass spectrometer in SRM mode after ionization
by electron capture APCI.

Three mL of cell media were extracted with diethyl-
ether twice after adjusting to pH = 3. After reconstitution
in acetonitrile, the solution was treated with PFB bromide
and diisopropylethylamine and heated to 60 °C for one
hour. The solution was allowed to cool, evaporated to
dryness, and re-dissolved in hexane prior to analysis on
the Finnigan TSQ Quantum Ultra.

HPLC
• Column: 4.6 × 250 mm CHIRALPAK® AD-H

• Pumps: Hitachi L-2100 and Finnigan Surveyor™

• Autosampler: Hitachi L-2200

• Mobile phase: (A) hexane, (B) 1:1 IPA/MeOH

• Flow rate = 1.0 mL/min

• Injection volume = 10 µL

• Post-column addition solution:
1:1 IPA/MeOH at 0.75 mL/min

Mass Spectrometer 
• Finnigan TSQ Quantum Ultra

• APCI vaporizer temperature = 450 °C

• APCI discharge current = 30 µA

• Ion transfer tube temperature = 250 °C

• Source CID = 5 V

Selected Reaction Monitoring (SRM) Parameters
• Q2 pressure = 1.0 mTorr argon

• SRM transitions and collision energies:
see Figures 1 and 2

• SRM scan time = 150 ms per transition

• Q1 resolution: 0.7 Da FWHM and 0.2 Da FWHM 

• Q3 resolution: 0.7 Da FWHM



Results and Discussion

Sensitivity of Electron Capture APCI
for PFB-Derivatized Lipids

LOQs of 10–25 pg/mL (100-250 fg on column) were
achieved for pentafluorobenzyl-derivatized hydroxy
fatty acids (Figures 1 and 2). Post-column addition of
1:1 IPA/MeOH was used to suppress the formation of

an electrically conductive “hair-like” filament on end
of corona discharge needle at high discharge currents
(>20 µA). The post-column addition did not decrease
the sensitivity for the lipid metabolites (data not shown).
Enhanced-resolution SRM show a two- to four-fold
improvement in S/N with minimal loss in absolute
signal for some lipid metabolites (Figure 3).
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Figure 3: Chromatograms for 500 pg/mL 12-HETE and d4-12(S)-HETE using Unit-resolution SRM (left column) and Enhanced-resolution
SRM (right column). 
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Figure 1: 10 pg/mL PFB-derivatized hydroxy fatty acid standards.
Deuterated internal standards are at 500 pg/mL.

Figure 2: 25 pg/mL PFB-derivatized hydroxy fatty acid standards.
Deuterated internal standards are at 500 pg/mL.



Quantitation of PFB-Derivatized Lipid Metabolites

Figures 4 and 5 illustrate the calibration curves for the
PFB-derivatized hydroxy fatty acid, 5(S)-HETE, in pure
HPLC-grade solvent and spiked into the cell incubation
medium, respectively. Although 1-point calibrations were
employed for the lipid metabolites, the linear regression
values (i.e., R2) were > 0.990 and the relative errors were

< ±20% above the LOQs. LOQs for the lipid metabolites
spiked into cell media were 100-200 pg/mL (1–2 pg
on-column), which were 4- to 10-times higher than from
standards diluted in HPLC-grade solvent (10–25 pg/mL).
This is likely attributed to increased background and
decreased ionization efficiency due to matrix interferences.
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Figure 4: Calibration curve for 5(S)-HETE prepared in HPLC-grade solvent using 500 pg/mL d8-5(S)-HETE as the internal standard.
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Figure 5: Calibration curve for 5(S)-HETE spiked into cell culture media using 10 ng/mL d8-5(S)-HETE as the internal standard.
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Concentration of 5-HETE in Aspirin-incubated RIE Cells

RIE cells incubated with aspirin show that a near equiva-
lent amount of 5(R)- and 5(S)-HETE are produced (see
Figure 6 and Chart 1). Analysis of a control RIE cell

extract did not show the presence of 5(R)- or 5(S)-HETE
(data not shown). The near racemic mixture of (R) and
(S) isomers suggests that 5-HETE is formed by non-
enzymatic means in aspirin-incubated RIE cells.
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Figure 6: Chromatograms for 5-HETE and d8-5(S)HETE from Aspirin-
incubated rat intestinal epithelial cell extracts.
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Chart 1: Measurement of (R) and (S) enantiomers of 5-HETE in Aspirin-
incubated rat intestinal epithelial cells.

Conclusions

Derivatization of hydroxy fatty acids with pentafluorobenzyl
bromide affords low-level detection using electron capture
APCI and selected reaction monitoring. The unique
enhanced-resolution SRM capability of the Finnigan TSQ
Quantum Ultra increased the selectivity and sensitivity of
certain PFB-derivatized lipid metabolites, leading to improved
LOQs compared with unit-resolution SRM. In addition,
enhanced-resolution SRM provides higher confidence in the
LOQs when analyzing target analytes in samples prepared

from complex biological matrices. The LOQs for the lipid
metabolites were 4–10 times higher in the biological cell
media versus pure solvent solutions. Incubation of RIE cells
with aspirin showed a near equivalent concentration of
5(R)- and 5(S)-HETE, suggesting that 5-HETE is formed
by a non-enzymatic pathway under these conditions.
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